

# NERSC Role in Biological and Environmental Research

**Katherine Yelick NERSC Director** 

**Requirements Workshop** 









# NERSC is the Production Facility for DOE SC

NERSC serves a large population

Approximately 3000 users, 400 projects, 500 code instances

Focus on "unique" resources

- -High end computing systems
- -High end storage systems
  - Large shared file system
  - Tape archive
- Interface to high speed networking
  - ESNEt soon to be 100 Gb/s
- Allocate time / storage
  - -Current processor hours and tape storage



2009 Allocations







# What's Changed in DOE Priorities for NERSC?









## **ASCR's Computing Facilities**

### **NERSC**

#### **LBNL**

- Hundreds of projects
- 2010 allocations:
  - 70-80% SC offices control; ERCAP process
  - 10-20% ASCR (new ALCC program)
  - 10% NERSC reserve
- Science covers all of DOE/SC science

### **LCFs**

### ORNL and ANL

- Tens of projects
- 2010 allocations:
  - 70-80% ANL/ORNL managed; INCITE process
  - 10-20% ACSR (new ALCC program)
  - 10% LCF reserve
- Science areas limited to those at largest scale; not limited to DOE/SC







# **NERSC 2009 Configuration**

### Large-Scale Computing System

Franklin (NERSC-5): Cray XT4

- 9,532 compute nodes; 38,128 cores
- ~25 Tflops/s sustained application performance
- 356 Tflops/s peak performance
- 8 GB of memory per quad-core node



#### Clusters





#### Bassi (NCSb)

- IBM Power5 (888 cores) Jacquard (NCSa)
- LNXI Opteron (712 cores)
   PDSF (HEP/NP)
  - Linux cluster (~1K cores)

NERSC Global Filesystem (NGF) Uses IBM's GPFS 440 TB; 5.5 GB/s



#### **HPSS Archival Storage**

- 59 PB capacity
- 11 Tape libraries
- 140 TB disk cache



 Davinci (SGI Altix)









## **Demand for More Computing**

### Compute Hours Requested vs Allocated



- Each year DOE users requests ~2x as many hours as can be allocated
- This 2x is artificially constrained by perceived availability
- Unfulfilled allocation requests amount to hundreds of millions of compute hours in 2009





# **How NERSC Uses Your Requirements**







## 2005: NERSC Five-Year Plan

### • Trends:

- Widening gap between application performance and peak
- Emergence of multidisciplinary teams
- Flood of scientific data from simulations and experiments
- NERSC Five-Year Plan
  - New major system every 3 years, each runs for 5-6 years
- Implementation
  - NERSC-5 (Franklin) and NERSC-6 (underway)
  - Clusters (Jacquard, Bassi, TBD) and Davinci
- Question: What trends do you see in algorithms and usage?







# **Applications Drive NERSC Procurements**

Because hardware peak performance does not necessarily reflect real application performance

NERSC-6 "SSP" Benchmarks

CAM Climate GAMESS Quantum Chemistry

*GTC* Fusion

IMPACT-T Accelerator Physics

MAESTRO
Astrophysics

MILC Nuclear Physics PARATEC Material Science

- Benchmarks reflect diversity of science and algorithms
- SSP = average performance (Tflops/sec) across machine
- Used before selection, during and after installation
- Question: What applications best reflect your workload?







# Requirements Drive NERSC's Long-Term Vision









## **NERSC Plans Circa 2007**



Question: Where do your discoveries lie on this graph?







## **Data Needs Continue to Grow**

- Scientific data sets are growing exponentially
  - Simulation systems and some experimental and observational devices grow in capability with Moore's Law
- Petabyte (PB) data sets will soon be common:
  - Climate modeling: estimates of the next IPCC data is in 10s of petabytes
  - Genome: JGI alone will have .5 petabyte of data this year and double each year
  - Particle physics: LHC are projected to produce 16 petabytes of data per year
  - Astrophysics: JDEM alone will produce .7 petabytes/year
- We will soon have more data than we can effectively store and analyze

Science

Question: What are your data set sizes (active disk vs. archive), bandwidths?







## **Tape Archives: Green Storage**





- Tape archives are important to efficient science
  - 2-3 orders of magnitude less power than disk
  - Requires specialized staff and major capital investment
  - NERSC participates in development (HPSS consortium)
- Questions: What are your data sets sizes and growth rates?







## **NERSC Global File system (NGF)**



- A facility-wide, high performance, parallel file system
  - Uses IBM's GPFS technology for scalable high performance
  - Makes users more productive
- Questions: How large is your "working set"? Is it shared community-wide?







## **Science Gateways**

- Create scientific communities around data sets
  - Models for sharing vs. privacy differ across communities
  - Accessible by broad community for exploration, scientific discovery, and validation of results
  - Value of data also varies: observations may be irreplaceable
- A science gateway is a set of hardware and software that provides data/services remotely
  - Deep Sky "Google-Maps" of astronomical image data
    - Discovered 36 supernovae in 6 nights during the PTF Survey
    - 15 collaborators worldwide worked for 24 hours non-stop
  - GCRM Interactive subselection of climate data
  - Gauge Connection Access QCD Lattice data sets
  - Planck Portal Access to Planck Data
- Building blocks for science on the web
  - Remote data analysis, databases, job submission













# Traditional Sources of Performance Improvement are Flat-Lining

- Moore's Law is alive and well
- 15 years of *exponential* clock speed growth has ended
- How to use the transistors?
  - Industry Response: #cores per chip doubles every 18 months instead of clock frequency!
  - Is this a good idea, or is it completely brain-dead?
  - Concurrency will increase, but how much from SIMD, vectors, cores, accelerators?





Figure courtesy of Kunle Olukotun, Lance 16 Hammond, Herb Sutter, and Burton Smith



## Parallelism is "Green"

• Concurrent systems are more power efficient

 Dynamic power is proportional to V<sup>2</sup>fC

Increasing frequency (f) also increases supply voltage (V) → cubic effect

Increasing cores increases capacitance (C) but only linearly



- High performance serial processors waste power
  - Speculation, dynamic dependence checking, etc. burn power
  - Implicit parallelism discovery
- Question: Can you double the concurrency in your algorithms and software every 2 years?







## **Technology Challenge**

Technology trends against a constant or increasing memory per core

- Memory density is doubling every three years; processor logic is every two
- Storage costs (dollars/Mbyte) are dropping gradually compared to logic costs





The cost to sense, collect, generate and calculate data is declining much faster than the cost to access, manage and store it

Question: Can you double concurrency without doubling memory?







## **Hardware and Software Trends**

### Hardware Trends

- Exponential growth in explicit on-chip parallelism
- Reduced memory per core
- Heterogeneous computing platforms (e.g., GPUs)
- As always, this is largely driven by non HPC markets

## Software Response

- Need to express more explicit parallelism
- New programming models on chip: MPI + X
- Increased emphasis on strong scaling

#### What we want

 Understand your requirements and help craft a strategy for transitioning to a hardware and programming environment solution







# Biological and Environmental Science at NERSC







## Validating Weather Models

- "20th Century Reanalysis" using an Ensemble Kalman filter to fill in missing climate data since; can be used for validation of models
- PI: G. Compo, U. Boulder
- Science Results:
  - Reproduced 1922
     Knickerbocker storm and dust storms of 1930s
  - Building maps every 6 hours 1982-2008
- Scaling Results:
  - Scales to 2.4K cores
  - Switched to higher resolution algorithm with Franklin access
  - 1M hours in 2009 (NERSC Reserve)







# **Supporting Efficient Algorithms**

- Computation: Numerical simulation of a lean premixed hydrogen flame in a laboratory-scale low-swirl burner (LMC code). Uses a low Mach number formulation, adaptive mesh refinement (AMR) and detailed chemistry and transport.
- PI: John Bell, LBNL

#### Science Result:

 Simulations capture cellular structure of lean hydrogen flames and provide a quantitative characterization of enhanced local burning structure

#### **NERSC Results:**

- LMC dramatically reduces time and memory.
- Scales to 4K cores, typically run at 2K
- Used 9.6M hours in 2008, allocated 5.5M in 2009









# **Supporting Efficient Algorithms**

- Hybrid numerical methods for subsurface Biogeochemical processes
- Pls: Tim Sheibe, Bruce Palmer, et al

NERSC Analytics collaborating on Data Model for particle data Parallel Visualization (VisIt)











## NERSC Service Examples: Molecular Dynamics and Protein Folds

# PI: Valerie Dagget Science Goals:

Catalog dynamical shapes of proteins by systematically unfolding them.

**Results** include increased sampling of biomedically relevant targets

#### **Work with NERSC:**

Load balance in the *ilmm* code Scalar optimizations
Batch work flow planning

### Impact:

20% improvement in time to solution. Portable code improvements.







# Data Acquisition and Visualization Pipeline





## **Accelerating Remote Display**

- Problem: remote display operations are very slow due to network latency.
- Solution: deploy new technology at NERSC that hides network latency in remote display operations to improve user productivity.
- Deployed Summer 2008 to entire NERSC user community.
- Results: improves remote display by a factor of about 10x.



Screenshot of a remote display session running multiple 3D visual data analysis applications.







## **Conclusions**

## NERSC requirements

- Qualitative requirements shape NERSC functionality
- Quantitative requirements set the performance "What gets measure gets improved"

### Goals:

- Your goal is to make scientific discoveries
- Our goal is to enable you to do science







# Science-Driven Computing Strategy 2006 -2010





